THE EVENING SKY AT THE WINTER SOLSTICE

Written by serviss | Published 2023/03/27
Tech Story Tags: science-fiction | literature | hackernoon-books | project-gutenberg | books | garrett-p.-serviss | ebooks | round-the-year-with-the-stars

TLDRThe magic of the starry heavens does not fail with the decline of the sun in winter, but, on the contrary, increases in power when the curtains of the night begin to close so early that by six o’clock the twilight is gone and the firmament has become a dome of jet ablaze with clusters of living gems. And when the snows arrive, mantling the hills with glistening ermine, the coruscating splendor of the sky seems to be redoubled. If I were to choose a time most suitable for interesting a novice in the beauties and wonders of uranography, I would select the winter, and I would lead my acolyte, on a clear, frosty night, when the landscape was glittering with crusted snow, upon some eminence where the curve of the horizon was broken only by the leafless tops of a few trees, through which the rising stars would flash like electric lamps. The accord between the stars and the seasons is never more evident than at such a time and in such a place, and the psychology of the stars is then most strongly felt. When the earth is locked fast in the bonds of winter the sparkling heavens seem most alive. I would have, if it were possible, a clump of dark pines or hemlocks near the place of observation, throwing their shadows on the snow, while Sirius in all its wild beauty blazed above them, and Aldebaran, Rigel, and Betelgeuse filled the vibrant air about them with jewelled lances of prismatic light. Then the sound of sleigh-bells in the resonant atmosphere would seem an aerial music shaken from the scintillant sky, and a lurking fox, stealing from his den in the edge of the shadows, would appear timorously conscious of the splendor over his head. The nocturnal animals know a day more glorious than ours, but it is never so glorious as when its multi-colored rays splinter upon crystalled hills at the winter solstice.via the TL;DR App

Round the year with the stars by Garrett Putman Serviss is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE EVENING SKY AT THE WINTER SOLSTICE

IV. THE EVENING SKY AT THE WINTER SOLSTICE

The magic of the starry heavens does not fail with the decline of the sun in winter, but, on the contrary, increases in power when the curtains of the night begin to close so early that by six o’clock the twilight is gone and the firmament has become a dome of jet ablaze with clusters of living gems. And when the snows arrive, mantling the hills with glistening ermine, the coruscating splendor of the sky seems to be redoubled. If I were to choose a time most suitable for interesting a novice in the beauties and wonders of uranography, I would select the winter, and I would lead my acolyte, on a clear, frosty night, when the landscape was glittering with crusted snow, upon some eminence where the curve of the horizon was broken only by the leafless tops of a few trees, through which the rising stars would flash like electric lamps. The accord between the stars and the seasons is never more evident than at such a time and in such a place, and the psychology of the stars is then most strongly felt. When the earth is locked fast in the bonds of winter the sparkling heavens seem most alive. I would have, if it were possible, a clump of dark pines or hemlocks near the place of observation, throwing their shadows on the snow, while Sirius in all its wild beauty blazed above them, and Aldebaran, Rigel, and Betelgeuse filled the vibrant air about them with jewelled lances of prismatic light. Then the sound of sleigh-bells in the resonant atmosphere would seem an aerial music shaken from the scintillant sky, and a lurking fox, stealing from his den in the edge of the shadows, would appear timorously conscious of the splendor over his head. The nocturnal animals know a day more glorious than ours, but it is never so glorious as when its multi-colored rays splinter upon crystalled hills at the winter solstice.
Now the greatest of the constellations reign in the sky. Orion is high up in the southeast, and around him are arrayed his brilliant attendants and companions—toward the west Taurus, with Aldebaran and the glittering Pleiades; above, Auriga and Gemini dipping their feet in the Milky Way; in the east, Canis Minor, with great, steady Procyon, and Canis Major proclaiming his precedence with flaming Sirius, the King of the Stars. We cannot do better than begin with this starry monarch and his constellation.
CHART IV—THE WINTER EVENING SKY
To me Sirius will always remain associated with the memory of Christmas sleigh-bells and the thrilling creak of runners on crisp, hard snow, for it was during a drive home from a “Christmas-tree” in a country church that I first made the acquaintance of that imperial star. It seemed to me more brilliantly beautiful than any of the dazzling gifts that had hung so magically on the illuminated tree. Its splendor is unearthly, putting diamonds and sapphires to shame. How people can live and be happy without ever gazing at such an object surpasses the understanding of any one who has once beheld and yielded to its charm. The splendors of Aladdin’s Cave are for children, and fade in the light of advancing life, but these glories of the universe are for men and women, and grow brighter with the years.
The renown of Sirius is as ancient as the human race. There has never been a time or a people in which or by whom it was not worshipped, reverenced, and admired. To the builders of the Egyptian temples and pyramids it was an object as familiar as the sun itself. Its name is usually regarded as being derived from the Greek Σείριος, the “Bright or Shining One,” but it is also thought that it may be connected with Osiris. The familiar title of the “Dog Star” comes from its association with the dies caniculariæ of the Romans.
“As the movable Egyptian year,” says George Cornewell Lewis, “was held to have originally begun at the heliacal rising of the Dog Star, which was contemporary with the ordinary commencement of the inundation of the Nile, this period was, by late writers, entitled the Canicular, or Sothiac, period, Sothis being the Egyptian name for the Dog Star.”
Norman Lockyer identifies Sirius with the goddess Isis, or Hathor, who was personified by that star, and the temple of Isis at Dendera was, he avers, built to watch it. “It has been pointed out, times without number,” he adds, “that the inscriptions indicate that by far the most important astronomical event in Egyptian history was the rising of the star Sirius at this precise time.”
Sirius has sometimes been identified with the “Mazzaroth” of the Book of Job.
The great star is worthy of all its fame, not only by its magnificent beauty, but by the revelations which modern science has afforded us concerning it. While not comparable in actual luminosity with Rigel, Canopus, or even Arcturus, it immensely outshines the best of them to our eyes because of its relative nearness. Its distance is only about 50,000,000,000,000 miles (parallax 0″.37), so that it is really one of the nearest stars in the sky. Light requires about nine years to come to us from Sirius. Outshining the sun at least thirty times, it is so bright, even at that distance, that a special rank has been given to it in stellar photometry. Formerly all very bright stars were ranked as of the first magnitude, but greater exactness is now employed, the naked-eye stars being divided among eight magnitudes, running from 6 up to -1. Thus the faintest star visible to the naked eye is of magnitude 6; a star 2.51 times brighter is of magnitude 5; a star 2.51 times brighter than that is of magnitude 4, and so on up to magnitude 1. A star 2.51 times brighter than magnitude 1 is of magnitude 0; and one 2.51 times brighter than the 0 magnitude is of magnitude -1, a degree of brilliance which is attained by Sirius alone. In fact, Sirius exceeds magnitude -1, its real rank being -1.6. On the same scale the magnitude of the sun would be -26.3. The standard first magnitude s usually taken as being represented by the star Altair, although that star is not exactly of that magnitude. As a ready rule it may be said that each magnitude is two and a half times brighter than the next below it, and a difference of six magnitudes corresponds to an increase of one hundred times in brilliance. Sirius is about ten times as bright as Altair. While, if seen from the same distance, Sirius would appear at least thirty times as bright as the sun, at our actual distance from both the light received from the sun is to that received from Sirius in the ratio of about 7,000,000,000 to 1. While by no means the largest sun in the universe, Sirius is the largest sun in our part of space, and some indications have been detected that it may, to a certain extent, control the motion of the solar system. In other words, our sun and some of the nearer stars appear to form a group, or family, of which Sirius is probably the chief.
Sirius is an intensely white star, but its whiteness is shot with a tint of blue or green. It has not the purity of light of Spica. Owing also to its great brilliance, it twinkles incessantly, darting, in an unsteady atmosphere, rays of all the colors of the rainbow. The spectroscope shows that it is a sun at an earlier stage of development than ours. It is also a binary. A very massive companion, singularly faint for its size, revolves round it in a period of about fifty-three years. At present the distance between these stars is more than 6″. The small star is more than half as massive as Sirius, but ten thousand times less brilliant—one would say a dying sun linked by gravitation with another in the heyday of its life and splendor.
The constellation Canis Major, of which Sirius is the leader, is very striking in outline when well above the horizon. Some six degrees west of Sirius is seen the second star of the constellation, Beta (β), or Murzim (Arabic Al Murzim, the “Announcer”), a name which Ideler says originated in the fact that this star rises ahead of Sirius, and thus appears to announce its coming. The remainder of the constellation should be viewed an hour or two later than that for which Chart IV is drawn, or a month later in the season, when it is farther from the horizon. It represents the hind-quarters of the imaginary dog. The star Epsilon (ε), or Adhara, perhaps the brightest in the group, is a double; colors orange and violet; distance 7″.5. The smaller star is of only the ninth magnitude. Delta (δ) is called Wezen, the “Weight,” because “the star seems to rise with difficulty from the horizon,” an excellent instance of the fanciful titles which the Arabs and others often gave to stars. Zeta (ζ) is Furud, and Eta (η) Aludra. The meaning of these names is uncertain. Allen says that the Arabs called Epsilon, Delta, Eta, and Omicron (ο) “The Virgins.” But they had other names for them suggested by fancied resemblances as they rose sparkling from the desert.
From Canis Major the eye rises to Orion, the most glorious of all constellations:
“Whoso kens not him in cloudless night
Gleaming aloft, shall cast his eyes in vain
To find a brighter sign in all the heaven.”
Brown, in his Primitive Constellations, undertakes to derive the name from the Akkadian Uru-anna, the “Light of Heaven.” Whatever its origin, it is certainly very ancient. For some thousands of years it has been associated with a traditional giant who looms in the background of Greek mythology. In the classical atlases of the heavens Orion is represented as standing in an attitude of defiance, facing westward, brandishing a huge club above his head, and lifting his left arm, covered with a lion’s hide, to meet the charge of Taurus, the “Bull.” And under some such guise all mankind has seen him for untold ages—always a gigantic figure, always heroic in character, always defying or pursuing—the symbol of strength, courage, conquest, and victory. The same idea underlies every representation of this constellation; whether it be the mythical “Giant” of the East, or “Nimrod” or “Joshua” or the “Armed King” or the “Warrior” or the “Hunter,” it is invariably the figure of a doer of great deeds which is presented to the imagination. And it must be said that the aspect of the constellation is in accord with such thoughts. No one can look at it without a stirring of the blood. It has something of the effect of a great battle-piece, and it is not surprising that they once endeavored in France to connect it with the name of Napoleon. Although its two chief stars are separated some eighteen degrees, and the central “Belt” forms a striking figure by itself, yet there is an unmistakable unity about the constellation, and one would hardly think of dividing it into separate groups. Singularly enough, this sense of oneness is borne out by the photographic discovery that a vast swirl of nebulous matter surrounds the entire constellation, and by the spectroscopic proof that nearly all of its stars belong to one type, which has become known as the “Orion type.”
Perhaps the first feature of Orion that strikes the eye is the arrangement of the three nearly equal bright stars which form the Belt. Their Greek-letter names are Delta, Epsilon, and Zeta, and by these they are usually designated, but there is a great charm in their Arabic titles, which, in the same order, are Mintaka, “Belt”; Alnilam (from “String of Pearls”); and Alnitah, “Girdle.” It will be observed that all of these names have a similar signification, and probably each of them was originally employed to designate the whole row.
The Belt is remarkable in another way—it points very nearly toward Sirius; it is like a glittering signboard indicating the position of the brightest star in the sky. To hasty observation the row seems to be perfectly straight, although there is in reality a slight bend, and the distances separating the three stars appear to be exactly equal. The effect is as beautiful as it is surprising.
Below the Belt hangs a fainter row of stars constituting the “Sword.” The central star of this row, Theta (θ), arrests the attention at once by a curious appearance of nebulosity, especially if it is examined with an opera-glass. A telescope shows it to be enveloped in one of the grandest nebulæ in the sky, the celebrated “Great Nebula of Orion.” With a large glass its appearance is astonishing in the highest degree. Instead of being elongated like the great nebula in Andromeda, it is about as broad as long, with no single centre of condensation, but many curdled accumulations, interspersed with partial gaps, and a great variety of curved lines of brighter nebulosity, suggesting the misty skeleton of some nondescript monster impact of phosphorescent clouds. A large number of stars are scattered over or through it, and some of them seem clearly to be connected with it, as if created out of its substance. Unlike the Andromeda nebula, this shows only the spectrum of glowing gas, so that no such supposition as has been made in the other case—viz., that it may be an outside universe—is admissible here. It is rather a chaos, rich with the elements from whose combinations spring suns and planets, and where the effects of organizing forces are just beginning to become manifest. It resembles a vast everglade filled with tangled vegetation and uncouth growths, but where the fertile soil, once cleared and drained, is capable of producing an enormous harvest.
On either side of the Belt, but far removed from it, shine the two great stars of Orion, Alpha (α), or Betelgeuse (from an Arabic phrase meaning the “Armpit of the Central One”), and Beta (β), or Rigel (from an Arabic phrase meaning the “Leg of the Giant”). These stars differ remarkably in color, Betelgeuse being orange-hued, and Rigel white. Although Betelgeuse takes precedence in the Greek-letter ranking, it is variable in brightness, sometimes exceeding Rigel in brilliance, and sometimes falling below it. The changes are uncertain in a long and as yet unascertained period. There is here an opportunity for an amateur to make valuable observations. But such observations must be continued over a considerable period of years.
Both stars are of immense actual magnitude. Their distance is so great that no trustworthy estimate of their parallax has yet been made. Rigel was put by Newcomb in his “XM” class, to which we have several times referred. It is without doubt one of the mightiest suns in the universe. It is also a double, and one of the finest in the sky. Close to its flaming rays the telescope reveals a small, intensely blue star. The distance is about 9″.5. In its general aspect Rigel resembles Vega, but the latter has a more decided blue tint. Scientific photometry gives the precedence in brightness to Vega, which is ranked as of magnitude 0.1, while Rigel is 0.3, which means that the first is one-tenth, and the second three-tenths of a magnitude below the 0 rank. It is very interesting to bring Rigel and Betelgeuse close together with a good sextant and then note the difference in their color.
The star Gamma (γ), or Bellatrix, the “Amazon” or “Female Warrior,” marks the left shoulder of the imaginary giant. Astrological superstition connects this star with the fortunes of women. Kappa (κ), or Saiph, “Sword” (although it is far from the Sword), is in the right knee of the figure. The head is marked by a little triangular group of stars, the chief of which is Lambda (λ), a fine double, yellow and purplish; distance 4″.5. The “lion’s hide” which Orion is represented as carrying on his left arm like a shield is shown by a bending row of small stars, beginning with Pi (π) and running upward between Bellatrix and Aldebaran in Taurus. The reader who is not provided with a telescope is advised, at least, to employ an opera-glass in sweeping over the whole space included in Orion. It is a region superb in its beauty and grandeur. Around the Belt, particularly, the sky is filled with sparkling multitudes infinitely varied in size, color, and grouping. As already said, this part of the firmament contains an enormous spiral nebula, which, although it can only be seen in photographs, seems to manifest its presence to the eye by the significant arrangement of small stars in curving lines. A word should be added about the star Zeta, or Alnitah, at the southeastern end of the Belt. It is a triple, very remarkable for the indescribable color of its second largest component. The Russian astronomer Struve could find nothing exactly resembling it in tone in the whole gamut of spectral colors, and he invented a special name to describe it—olivacea-sub-rubicunda, which may be translated “ruddy-olive.” It is 2″.5 from its larger companion. The third star is very faint, and distant 56″. When the telescope is directed to the star Sigma (σ) there comes into view an astonishing double group of stars, among which such colors as pale blue, “grape-red,” ruddy, and “gray” have been detected. The effect upon the mind of seeing such combinations of tinted suns transcends all power of description. With the feeling of pleasure that they give goes a sense of staggering wonder.
West of Orion, beginning near Rigel, is seen the constellation Eridanus, the River Po. Its stars are interesting for their plainly streaming tendency rather than for their individual peculiarities. Rising slightly from the neighborhood of Rigel, the stream runs in a graceful curve under Taurus, and continues westward until it meets Cetus, where it turns downward toward the horizon, and then sweeps back eastward again, disappearing behind the southern horizon below Orion and Lepus. It has no large star visible in northern latitudes, but in the southern hemisphere it contains one of the brightest stars in the sky, Achernar, the “End of the River.” All of the ancients saw a river in this part of the sky, a fact which does not surprise the observer when he has once noted the arrangement of the stars of Eridanus. Its stars are so numerous that the old uranographers seem to have grown weary of attaching letters to them; or rather, perhaps, the alphabet was too short to answer the demand, for no less than nine of them, beginning from the one thus lettered in Chart V, are called Tau (τ), as τ¹, τ², τ³, etc. (For the origin of the association of Eridanus with the River Po, and with the story of Phaeton, see Astronomy with the Naked Eye).
The constellation Lepus, the Hare, below Orion, and marking the place where Eridanus turns finally to flow into the far south, is noteworthy only for its groupings of stars. It contains one star too faint to be seen with the naked eye near the western border of the constellation, below and to the right of the little group under Rigel, in Chart V, which is so intensely crimson that Hind likened its appearance to a blood drop.
We turn next to Taurus. On account of the beauty of Aldebaran and the Pleiades, this constellation hardly falls behind Orion in attractiveness. Aldebaran (Arabic Al Dabaran, the “Follower”) is the chief star of the constellation and the leader of the group called the Hyades, a name which Lewis derives from the Greek word ὕειυ, to rain, because their rising was connected with the beginning of the rainy season. Popularly the group is known as the “Letter A,” whose form it imitates, although it is usually seen nearly upside down. The letter V would perhaps better represent our view of it. It is a glorious sight with an opera-glass. Aldebaran is distinctly red, but of a peculiar tone, which has frequently been called rose-red. Its redness is certainly unlike the orange tone of Betelgeuse. When gazing at it in a fanciful mood, I have often likened it imaginatively to an apple-blossom in color. Flammarion has translated the Hebrew name of this star, Aleph, as “God’s Eye.” Taurus, he says, is the most ancient of the signs of the zodiac, the first that the Precession of the Equinoxes placed at the head of the signs, and he adds that observational astronomy appears to have been founded at the epoch when the Vernal Equinox lay close to Aldebaran—i. e., about three thousand years before the commencement of our era.
The beauty of Aldebaran, the singularity of the figure shaped by its attendants, the charming effect produced by the flocks of little stars, the Deltas and the Thetas, in the middle of the arms of the letter, and the richness of the stellar groundwork of the cluster, all combine to make the Hyades one of the most memorable objects in the sky; but no one can describe it, because the starry heavens cannot be put into words. Terrestrial analogies, and phrases applied to things seen on the earth, utterly fail to convey the impressions made by such spectacles. I can only again urge the reader to examine the Hyades with a good opera-glass on a clear night when there is no moonlight to interfere. Some one once said, “If you would test your appreciation of poetry, read Milton’s Lycidas”; so I would say, If you would know how you are affected by nature’s masterpieces in the sky, look at the Hyades.
The stars Theta (θ) and Sigma (σ) are both naked-eye doubles for sharp eyes. Try if you can see both of the pairs.
The Hyades represent the head of the imaginary bull, Aldebaran standing for the eye, while rows of stars running up toward Zeta (ζ) and Beta (β) figure the “golden horns.” The Pleiades, the “Atlantid Nymphs,” hang on the shoulder. They form a much more compact group than the Hyades, and possess no large star, their chief brilliant, Alcyone—Eta(η)—being only of the third magnitude. But the effect of their combination is very striking and beautiful. In looking at them one can never refrain from quoting Tennyson’s famous lines in which they are described as glittering “like a swarm of fireflies tangled in a silver braid.” The adjective silvery exactly describes them. If you happen to glance at the sky at a point many degrees away from the place where they shine, your eye will inevitably be drawn to them. They have greater attractive power than a single large star, and the effect of their intermingled rays is truly fascinating. With an opera-glass they look like the glimmering candles on a Christmas-tree. Their mythological history and the many strange traditions pertaining to them I have described elsewhere, and shall not repeat here; but it should be said that there is not in all the sky any object comparable with the Pleiades in influence over the human imagination. The fancy of Maedler that Alcyone was the central sun of the universe, and the inference, so popular at one time, that it might be the very seat of the Almighty, have vanished in the limbo of baseless traditions; but the mystic charm of the Pleiades has been increased by the photographic discovery that they are involved in a wonderful mass of tangled nebulæ. Their distance is unknown, but evidently very great, some having put it at 250 light-years, corresponding to about 1,450,000,000,000,000 miles! If this is correct, Alcyone may be really one of the most gigantic suns in the universe. They appear to be travelling together like a flock of birds.
It is always an interesting question how many stars in the cluster can be seen with the naked eye. Many persons can detect only six, but better, or more trained, eyes see seven, or even nine. The telescope and photography reveal thousands thickly sprinkled over the space of sky that they occupy, or immediately around them. How many of these are actually connected with the group is unknown. One of the most persistent legends of antiquity is that of the “Lost Pleiad.” Says Miss Clerke, in her System of the Stars:
“That they 'were seven who now are six’ is asserted by almost all the nations of the earth from Japan to Nigritia, and variants of the classical story of the 'Lost Pleiad’ are still repeated by sable legend-mongers in Victoria, by headhunters in Borneo, by fetish worshippers amid the mangrove swamps of the Gold Coast. An impression thus widely diffused must either have spread from a common source or originated in an obvious fact; and it is at least possible that the veiled face of the seventh Atlantid may typify a real loss of light in a prehistorically conspicuous star.”
The name Pleiades is derived from the Greek πλεἵν, to sail, because their heliacal rising occurred at the time when navigation opened in the seas of Greece, and their heliacal setting at the time of its close.
“... Rude winter comes
Just when the Pleiades begin to set.”
But their religious significance seems always to have exceeded their practical importance as a sign of the seasons, and from the temples on the Acropolis of Athens to the sanctuaries of Mexico, Yucatan, and Peru they were regarded with reverence and awe. Modern popular fancies have been less reverential, and Alcyone and her attendants have been degraded to the figure of a “hen and her chickens.” Our red-skinned predecessors on this continent were more poetical, for they saw in the Pleiades a group of lost children, and in old China they were starry sisters busy with their needlework.
High overhead, above Orion and Taurus, gleams Capella, the chief star of the constellation Auriga, the “Charioteer.” This is also a white star, but no correct eye would confuse it with Rigel or Vega. It has none of the sapphire tint that is mingled in their rays, but is rather of the whiteness of cream. It is a very great star, not only in its apparent brilliance, but in actual luminosity. With a parallax of 0″.09, Newcomb calculated its luminosity at one hundred and twenty times that of the sun. It is a spectroscopic binary, the invisible companion revolving round it in a period of one hundred and four days. In spectroscopic character it closely resembles the sun, being in the same stage of development. Vogel’s observations indicate that it is flying away from us at a speed of more than a million and a quarter miles per day; but, in contradiction to this, some have thought that it is increasing in brightness. A little elongated triangle of stars below and somewhat to the west of Capella serves to render its recognition certain to the beginner in star-gazing. In the evenings of early November, when one is in the northeast and the other in the northwest, it is interesting to compare Capella with Vega, both in brightness and in color. In late January evenings Capella is near the zenith for the middle latitudes of the United States, and at such times is a superb object. The Milky Way pouring through Auriga increases the beauty of the spectacle.
The second star of Auriga, Beta (β), or Menkalina, the “Shoulder,” is also a spectroscopic binary with a period of only four days. It was the first binary of this class to be discovered. In 1889 Pickering found that its spectral lines were doubled every two days, from which he inferred the duplicate character of the star and calculated the period of revolution of its components.
Farther east we see Gemini, the “Twins.” It is a very beautiful constellation, independently of the brightness of its leaders, Castor and Pollux, or Alpha (α) and Beta (β). The feet of the imaginary twins are dipped in the Milky Way nearly above the uplifted club of the giant Orion, and close to the summer solstice. The successive belts of stars crossing the figures of the Twins present an attractive appearance. Castor, although the literal leader of the constellation, is not now as bright as its neighbor, Pollux. A change of brightness must have taken place. Castor is a celebrated binary with a period of about one thousand years. The distance between the two stars composing it is about 5″.5, and, both being bright, they can be separated with small telescopes.
Pollux is very near the standard first magnitude in brightness. It has a slightly orange tint in contrast with the whiteness of Castor. Like Orion, Taurus, and Auriga, Gemini offers splendid fields of stars for the opera-glass. A cluster, M35, not far above the place of the summer solstice, is an object of rare beauty when seen with a low telescopic power.
South of Gemini shines the bright star Procyon in Canis Minor, the Lesser Dog. This star, whose name implies the “Preceder, or Announcer, of the Dog,” because it rises a little ahead of Sirius, is the only bright star of its constellation. It is interesting for having a dusky companion whose existence was detected by the effects of its attraction before any telescope had revealed it. With this companion Procyon forms a binary system with a period of revolution of about forty years. The star Beta (β) is named Gomeisa, from an Arabic word meaning the “Dim One.” Procyon, Sirius, and Betelgeuse form a magnificent triangle, through which flows the Milky Way.
We now return to the western part of the sky, where we see, beyond Eridanus, the vast expanse covered by the constellation Cetus, the “Whale.” The head lies on and over the equator above the western bend of Eridanus. It is marked by a striking group of stars, of which Alpha (α), or Menkar, the “Nose,” is the chief. The star Gamma (γ) is a fine double; colors yellow and blue; distance 2″.5. Below and toward the west will be found Omicron (ο), better known by its popular title of Mira, the “Wonderful.” In some respects this is the most extraordinary of all variable stars. It excited great astonishment when its variations were first recorded in the seventeenth century. Most of the time it is entirely invisible to the naked eye; but once in about ten months it begins to brighten, and in a few weeks becomes conspicuous, sometimes equalling the second magnitude in brightness. Then it fades again, and in about three months disappears from naked-eye vision, although it is never lost to the telescope, which follows it down to the ninth magnitude, at which it remains, glowing redly, for several successive months. Its variations are more or less irregular both in period and in brightness. The causes are only conjectural. About all that we can say is that here is a sun which once every ten months blazes up to a thousand or fifteen hundred times its ordinary brilliancy. The imagination can work its will with such a star as that.
The western part of Cetus is marked by a striking group of stars shaped something like the bowl of an upturned dipper and by a lone, bright star still farther west, Beta (β), or Deneb Kaitos, the “Tail of the Whale.”
Above Cetus runs the long line of stars composing the constellation Pisces, now the leader of the zodiac, since it contains the Vernal Equinox. Alpha (α), or Al Rischa, the “Cord,” because it marks the ribbon imagined to bind two fishes together by their tails, is directly under the stars marking the head of Aries, to which we have already referred. It is a double of very singular colors—green and blue. The distance is about 3″.6. From Al Rischa the stars of the constellation stream northward to the figure of the Northern Fish, whose nose touches Andromeda, and westward to the Western Fish, which is situated under the Great Square of Pegasus. The extraordinary tendency of the stars of Pisces to run in streaming lines has been spoken of in Chapter III.
The other stars and constellations now visible are already familiar to us. But we turn again for a moment to Polaris, which, being practically fixed in the sky, can be seen at any season. I have referred to the fact that this star for a long series of centuries has been a universal guide to all the inhabitants of the northern hemisphere. In that character its history is no less romantic than practically important. One of the deepest impressions of my childhood was produced by an acquaintance with a remarkable man who at that time seemed to me to be a most wonderful traveller, since he had seen the Gulf of Mexico, the Everglades of Florida, the Dismal Swamp of Virginia, and, according to his story (which no boy would doubt), had battled with alligators and tasted the delights of vagabond life on the great cotton plantations of the South. I think he was the first who ever pointed out the North Star to me, and he fired my imagination by tales of its connection with the escape of negro slaves—escapes in which he professed to have played a part. Many long winter evenings he sat by my father’s fireside and fascinated his hearers with narratives of his adventures. But nothing interested me more than what he said of the slaves following the lead of the North Star, through the darkness of tangled swamps, among deadly moccasins and lurking alligators, always fixing their eyes upon “the star,” falling on their knees to it as their only friend and guide. Trembling at the bay of pursuing bloodhounds, they would lie in concealment during the daylight hours, and as soon as night came on would look for their celestial sentinel, and follow unquestioningly its indication of the way to freedom. However apocryphal these stories may have been, they certainly had a basis of truth, and the impressions then produced upon my mind concerning the character of Polaris as the sure friend of those who are lost and in trouble have remained undimmed in my memory. What a triumph will be that of the man who first visits the north pole by night, and sees that star gleaming directly over his head, while all the constellations solemnly circle about it, unresting and unsetting!
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Garrett Putman Serviss (2022). Round the year with the stars. Urbana, Illinois: Project Gutenberg. Retrieved October 2022 https://www.gutenberg.org/cache/epub/68391/pg68391-images.html
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.

Written by serviss | I look to the stars and see our future.
Published by HackerNoon on 2023/03/27