High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b: Appendix & Reference

Written by exoplanetology | Published 2024/02/19
Tech Story Tags: exoplanets | exoplanet-atmospheres | planetary-atmospheres | gj-486b-spectroscopy | gj-486b-research-paper | gj-486b | terrestrial-exoplanets | open-access-research-papers

TLDRThe exoplanet GJ 486b, orbiting an M3.5 star, is expected to have one of the strongest transmission spectroscopy signals among known terrestrial exoplanets.via the TL;DR App

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Andrew Ridden-Harper, Department of Astronomy and Carl Sagan Institute, Cornell University & Las Cumbres Observatory;

(2) Stevanus K. Nugroho, Astrobiology Center & Japan & National Astronomical Observatory of Japan;

(3) Laura Flagg, Department of Astronomy and Carl Sagan Institute, Cornell University;

(4) Ray Jayawardhana, Department of Astronomy, Cornell University;

(5) Jake D. Turner, Department of Astronomy and Carl Sagan Institute, Cornell University & NHFP Sagan Fellow;

(6) Ernst de Mooij, Astrophysics Research Centre, School of Mathematics and Physics & Queen’s University Belfast;

(7) Ryan MacDonald, Department of Astronomy and Carl Sagan Institute;

(8) Emily Deibert, David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto & Gemini Observatory, NSF’s NOIRLab;

(9) Motohide Tamura, Dunlap Institute for Astronomy & Astrophysics, University of Toronto

(10) Takayuki Kotani, Department of Astronomy, Graduate School of Science, The University of Tokyo, Astrobiology Center & National Astronomical Observatory of Japan;

(11) Teruyuki Hirano, Astrobiology Center, National Astronomical Observatory of Japan & Department of Astronomical Science, The Graduate University for Advanced Studies;

(12) Masayuki Kuzuhara, Las Cumbres Observatory & Astrobiology Center;

(13) Masashi Omiya, Las Cumbres Observatory & Astrobiology Center;

(14) Nobuhiko Kusakabe, Las Cumbres Observatory & Astrobiology Center.

Table of Links

APPENDIX

A. EXCLUDED WAVELENGTH REGIONS

Here, we explicitly define the wavelength regions that were excluded from our analysis for having severe telluric contamination or insufficient signal-to-noise ratios (especially at the edges of the spectral orders). The excluded regions for the IGRINS data are shown in Table 3.

REFERENCES

Airapetian, V. S., Glocer, A., Khazanov, G. V., et al. 2017, ApJL, 836, L3, doi: 10.3847/2041-8213/836/1/L3

Artigau, E., Kouach, D., Donati, J.-F., et al. 2014, in ´ Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 914715, doi: 10.1117/12.2055663

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Batalha, N. E., Mandell, A., Pontoppidan, K., et al. 2017, PASP, 129, 064501, doi: 10.1088/1538-3873/aa65b0

Berta-Thompson, Z. K., Irwin, J., Charbonneau, D., et al. 2015, Nature, 527, 204, doi: 10.1038/nature15762

Birkby, J. L. 2018, arXiv e-prints, arXiv:1806.04617. https://arxiv.org/abs/1806.04617

Bolmont, E., Selsis, F., Owen, J. E., et al. 2017, MNRAS, 464, 3728, doi: 10.1093/mnras/stw2578

Bourrier, V., de Wit, J., Bolmont, E., et al. 2017a, AJ, 154, 121, doi: 10.3847/1538-3881/aa859c

Bourrier, V., Ehrenreich, D., Wheatley, P. J., et al. 2017b, A&A, 599, L3, doi: 10.1051/0004-6361/201630238

Brogi, M., Line, M., Bean, J., D´esert, J. M., & Schwarz, H. 2017, ApJL, 839, L2, doi: 10.3847/2041-8213/aa6933

Brogi, M., & Line, M. R. 2019, AJ, 157, 114, doi: 10.3847/1538-3881/aaffd3

Brogi, M., Snellen, I. A. G., de Kok, R. J., et al. 2013, ApJ, 767, 27, doi: 10.1088/0004-637X/767/1/27

Caballero, J. A., Gonzalez-Alvarez, E., Brady, M., et al. 2022, arXiv e-prints, arXiv:2206.09990. https://arxiv.org/abs/2206.09990

Carnall, A. C. 2017, arXiv e-prints, arXiv:1705.05165. https://arxiv.org/abs/1705.05165

Chiavassa, A., & Brogi, M. 2019, A&A, 631, A100, doi: 10.1051/0004-6361/201936566 de Wit, J., Wakeford, H. R., Gillon, M., et al. 2016, Nature, 537, 69, doi: 10.1038/nature18641 de Wit, J., Wakeford, H. R., Lewis, N. K., et al. 2018, Nature Astronomy, 2, 214, doi: 10.1038/s41550-017-0374-z

Deibert, E. K., de Mooij, E. J. W., Jayawardhana, R., et al. 2021a, AJ, 161, 209, doi: 10.3847/1538-3881/abe768 —. 2021b, ApJL, 919, L15, doi: 10.3847/2041-8213/ac2513

Demory, B.-O., Gillon, M., de Wit, J., et al. 2016, Nature, 532, 207, doi: 10.1038/nature17169

Esteves, L. J., de Mooij, E. J. W., Jayawardhana, R., Watson, C., & de Kok, R. 2017, AJ, 153, 268, doi: 10.3847/1538-3881/aa7133

Gandhi, S., Brogi, M., & Webb, R. K. 2020, MNRAS, 498, 194, doi: 10.1093/mnras/staa2424

Giacobbe, P., Brogi, M., Gandhi, S., et al. 2021, Nature, 592, 205, doi: 10.1038/s41586-021-03381-x

Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C., & Sing, D. K. 2022, MNRAS, 512, 4618, doi: 10.1093/mnras/stac091

Gibson, N. P., Merritt, S., Nugroho, S. K., et al. 2020, MNRAS, 493, 2215, doi: 10.1093/mnras/staa228

Gressier, A., Mori, M., Changeat, Q., et al. 2022, A&A, 658, A133, doi: 10.1051/0004-6361/202142140

Grimm, S. L., & Heng, K. 2015, The Astrophysical Journal, 808, 182, doi: 10.1088/0004-637X/808/2/182

Grimm, S. L., Malik, M., Kitzmann, D., et al. 2021, ApJS, 253, 30, doi: 10.3847/1538-4365/abd773

Hargreaves, R. J., Gordon, I. E., Rey, M., et al. 2020, ApJS, 247, 55, doi: 10.3847/1538-4365/ab7a1a

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Helling, C. 2019, Annual Review of Earth and Planetary Sciences, 47, 583, doi: 10.1146/annurev-earth-053018-060401

Herman, M. K., de Mooij, E. J. W., Nugroho, S. K., Gibson, N. P., & Jayawardhana, R. 2022, AJ, 163, 248, doi: 10.3847/1538-3881/ac5f4d

Hirano, T., Kuzuhara, M., Kotani, T., et al. 2020, Publications of the Astronomical Society of Japan, 72, doi: 10.1093/pasj/psaa085

Jindal, A., de Mooij, E. J. W., Jayawardhana, R., et al. 2020, AJ, 160, 101, doi: 10.3847/1538-3881/aba1eb

Jones, A., Noll, S., Kausch, W., Szyszka, C., & Kimeswenger, S. 2013, A&A, 560, A91, doi: 10.1051/0004-6361/201322433

Kempton, E. M. R., Bean, J. L., Louie, D. R., et al. 2018, PASP, 130, 114401, doi: 10.1088/1538-3873/aadf6f

Khalafinejad, S., Molaverdikhani, K., Blecic, J., et al. 2021, A&A, 656, A142, doi: 10.1051/0004-6361/202141191

Kite, E. S., & Schaefer, L. 2021, ApJL, 909, L22, doi: 10.3847/2041-8213/abe7dc

Kotani, T., Tamura, M., Nishikawa, J., et al. 2018, in Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, Vol. 10702, International Society for Optics and Photonics (SPIE), 296 – 306, doi: 10.1117/12.2311836

Kreidberg, L. 2015, PASP, 127, 1161, doi: 10.1086/683602

Kreidberg, L., Koll, D. D. B., Morley, C., et al. 2019, Nature, 573, 87, doi: 10.1038/s41586-019-1497-4

Kuzuhara, M., Hirano, T., Kotani, T., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, 1070260, doi: 10.1117/12.2311832

Lee, J.-J., & Gullikson, K. 2016, plp: v2.1 alpha 3, v2.1-alpha.3, Zenodo, doi: 10.5281/zenodo.56067

Libby-Roberts, J. E., Berta-Thompson, Z. K., Diamond-Lowe, H., et al. 2022, AJ, 164, 59, doi: 10.3847/1538-3881/ac75de

Mace, G., Sokal, K., Lee, J.-J., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, 107020Q, doi: 10.1117/12.2312345

Madhusudhan, N., Ag´undez, M., Moses, J. I., & Hu, Y. 2016, SSRv, 205, 285, doi: 10.1007/s11214-016-0254-3

Miguel, Y. 2019, MNRAS, 482, 2893, doi: 10.1093/mnras/sty2803

Molli`ere, P., & Snellen, I. A. G. 2019, A&A, 622, A139, doi: 10.1051/0004-6361/201834169

Molli`ere, P., Wardenier, J. P., van Boekel, R., et al. 2019, A&A, 627, A67, doi: 10.1051/0004-6361/201935470

Morris, B. M., Delrez, L., Brandeker, A., et al. 2021, A&A, 653, A173, doi: 10.1051/0004-6361/202140892

Mugnai, L. V., Modirrousta-Galian, D., Edwards, B., et al. 2021, AJ, 161, 284, doi: 10.3847/1538-3881/abf3c3

Mugnai, L. V., Modirrousta-Galian, D., Edwards, B., et al. 2021, AJ, 161, 284, doi: 10.3847/1538-3881/abf3c3

Neves Ribeiro do Amaral, L., Barnes, R., Segura, A., & Luger, R. 2022, arXiv e-prints, arXiv:2203.10127. https://arxiv.org/abs/2203.10127

Noll, S., Kausch, W., Barden, M., et al. 2012, A&A, 543, A92, doi: 10.1051/0004-6361/201219040

Nugroho, S. K., Kawahara, H., Gibson, N. P., et al. 2021, ApJL, 910, L9, doi: 10.3847/2041-8213/abec71

Oliva, E., Origlia, L., Scuderi, S., et al. 2015, A&A, 581, A47, doi: 10.1051/0004-6361/201526291

Ortenzi, G., Noack, L., Sohl, F., et al. 2020, Scientific Reports, 10, 10907, doi: 10.1038/s41598-020-67751-7

Owen, J. E., Shaikhislamov, I. F., Lammer, H., Fossati, L., & Khodachenko, M. L. 2020, SSRv, 216, 129, doi: 10.1007/s11214-020-00756-w

Park, C., Jaffe, D. T., Yuk, I.-S., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 91471D, doi: 10.1117/12.2056431

Peacock, S., Barman, T., Shkolnik, E. L., et al. 2020, ApJ, 895, 5, doi: 10.3847/1538-4357/ab893a

Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 91471F, doi: 10.1117/12.2056453

Ramirez, R. M., & Kaltenegger, L. 2014, ApJL, 797, L25, doi: 10.1088/2041-8205/797/2/L25

Ridden-Harper, A. R., Snellen, I. A. G., Keller, C. U., et al. 2016, A&A, 593, A129, doi: 10.1051/0004-6361/201628448

Rogers, J. G., & Owen, J. E. 2021, MNRAS, 503, 1526, doi: 10.1093/mnras/stab529

Rogers, L. A., Bodenheimer, P., Lissauer, J. J., & Seager, S. 2011, ApJ, 738, 59, doi: 10.1088/0004-637X/738/1/59

Rousselot, P., Lidman, C., Cuby, J. G., Moreels, G., & Monnet, G. 2000, A&A, 354, 1134

Schaefer, L., & Fegley, B. 2009, ApJL, 703, L113, doi: 10.1088/0004-637X/703/2/L113

Shkolnik, E. L., & Barman, T. S. 2014, AJ, 148, 64, doi: 10.1088/0004-6256/148/4/64

Sim, C. K., Le, H. A. N., Pak, S., et al. 2014, Advances in Space Research, 53, 1647, doi: 10.1016/j.asr.2014.02.024

Sing, D. K., Fortney, J. J., Nikolov, N., et al. 2016, Nature, 529, 59, doi: 10.1038/nature16068

Snellen, I. A. G., Brandl, B. R., de Kok, R. J., et al. 2014, Nature, 509, 63, doi: 10.1038/nature13253

Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W., & Albrecht, S. 2010, Nature, 465, 1049, doi: 10.1038/nature09111

Snellen, I. A. G., de Kok, R. J., le Poole, R., Brogi, M., & Birkby, J. 2013, ApJ, 764, 182, doi: 10.1088/0004-637X/764/2/182

Swain, M. R., Estrela, R., Roudier, G. M., et al. 2021, AJ, 161, 213, doi: 10.3847/1538-3881/abe879

Tamura, M., Suto, H., Nishikawa, J., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84461T, doi: 10.1117/12.925885

Tamuz, O., Mazeh, T., & Zucker, S. 2005, MNRAS, 356, 1466, doi: 10.1111/j.1365-2966.2004.08585.x

Thompson, M. A., Telus, M., Schaefer, L., et al. 2021, Nature Astronomy, 5, 575, doi: 10.1038/s41550-021-01338-8

Trifonov, T., Caballero, J. A., Morales, J. C., et al. 2021, Science, 371, 1038, doi: 10.1126/science.abd7645

Tsiaras, A., Rocchetto, M., Waldmann, I. P., et al. 2016, ApJ, 820, 99, doi: 10.3847/0004-637X/820/2/99

Vanderspek, R., Huang, C. X., Vanderburg, A., et al. 2019, ApJL, 871, L24, doi: 10.3847/2041-8213/aafb7a

Vidal-Madjar, A., Lecavelier des Etangs, A., D´esert, J. M., et al. 2003, Nature, 422, 143, doi: 10.1038/nature01448

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2

Wakeford, H. R., Lewis, N. K., Fowler, J., et al. 2019, AJ, 157, 11, doi: 10.3847/1538-3881/aaf04d

Woitke, P., Helling, C., Hunter, G. H., et al. 2018, A&A, 614, A1, doi: 10.1051/0004-6361/201732193

Wunderlich, F., Godolt, M., Grenfell, J. L., et al. 2019, A&A, 624, A49, doi: 10.1051/0004-6361/201834504

Yurchenko, S. N., & Tennyson, J. 2014, MNRAS, 440, 1649, doi: 10.1093/mnras/stu326

Zhang, M., Knutson, H. A., Wang, L., et al. 2021, AJ, 161, 181, doi: 10.3847/1538-3881/abe382

Zhang, Z., Zhou, Y., Rackham, B. V., & Apai, D. 2018, AJ, 156, 178, doi: 10.3847/1538-3881/aade4f


Written by exoplanetology | What's out there? Aliens, water, or just a big empty nothingness? Original research about the vastness of our cosmos.
Published by HackerNoon on 2024/02/19