π Earth: a 3.14-day Earth-sized Planet from K2's Kitchen Served Warm: Future Prospects & References

Written by escholar | Published 2024/02/13
Tech Story Tags: exoplanets | planetary-systems | transit-photometry | k2-mission | space-based-observations | stellar-activity | space | pi-earth

TLDRvia the TL;DR App

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Prajwal Niraula, Department of Earth, Atmospheric and Planetary Sciences;

(2) Julien de Wit, Department of Earth, Atmospheric and Planetary Sciences;

(3) Benjamin V. Rackham, Department of Earth, Atmospheric and Planetary Sciences;

(4) Elsa Ducrot, Astrobiology Research Unit, University of Li`ege;

(5) Artem Burdanov, Department of Earth, Atmospheric and Planetary Sciences;

(6) Ian J. M. Crossfield, Kansas University Department of Physics and Astronomy;

(7) Valerie Van Grootel´, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(8) Catriona Murray, 5Cavendish Laboratory;

(9) Lionel J. Garcia, Astrobiology Research Unit, University of Li`ege;

(10) Roi Alonso, Instituto de Astrof´ısica de Canarias & Dpto. de Astrof´ısica, Universidad de La Laguna;

(11) Corey Beard, Department of Physics & Astronomy, The University of California;

(12) Yilen Gomez Maqueo Chew, Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ciudad Universitaria;

(13) Laetitia Delrez, Astrobiology Research Unit, University of Li`ege, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege & 0Observatoire de lUniversit´e de Gen`eve;

(14) Brice-Olivier Demory, University of Bern, Center for Space and Habitability;

(15) Benjamin J. Fulton, NASA Exoplanet Science Institute/Caltech-IPAC;

(16) Michael Gillon, Astrobiology Research Unit, University of Li`ege;

(17) Maximilian N. Gunther, Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology;

(18) Andrew W. Howard, California Institute of Technology;

(19) Howard Issacson, Department of Astronomy, University of California Berkeley;

(20) Emmanuel Jehin, Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(21) Peter P. Pedersen, Cavendish Laboratory;

(22) Francisco J. Pozuelos, Astrobiology Research Unit, University of Li`ege & Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Li`ege;

(23) Didier Queloz, Cavendish Laboratory;

(24) Rafael Rebolo-Lopez, Instituto de Astrof´ısica de Canarias & Dpto. de Astrof´ısica, Universidad de La Laguna';

(25) Sairam Lalitha, School of Physics & Astronomy, University of Birmingham;

(26) Daniel Sebastian, Astrobiology Research Unit, University of Li`ege

(27) Samantha Thompson, Cavendish Laboratory;

(28) Amaury H.M.J. Triaud, School of Physics & Astronomy, University of Birmingham.

Table of Links

Abstract & Introduction

Observation

Analysis and Validation

Future Prospects & References

4. FUTURE PROSPECTS

The search for transiting planets around small stars has been motivated in large part by their potential for atmospheric characterization. Owing to the size and proximity of its host, K2-315b is thus one of the few known terrestrial exoplanets possibly amenable for atmospheric characterization in the next two decades. In order to quantify and contextualize its prospects for atmospheric study, we followed the same approach as for TRAPPIST-1 in Gillon et al. (2016) (see de Wit & Seager 2013), focusing here on all known terrestrial planets. We selected terrestrial planets as planets with a reported radius below 1.6 R⊕ in the NASA Exoplanet Archive[4] (Rogers 2015; Fulton et al. 2017). We thus derive the amplitude of the planets’ signals in transmission as:

where Rp is the planetary radius, R∗ is the stellar radius, and heff is the effective atmospheric height, µ is the atmospheric mean molecular mass, T is the atmospheric temperature and g is the local gravity. We assume heff to cover seven atmospheric scale heights, µ the atmospheric mean molecular mass to be 20 amu, and the atmospheric temperature to be the equilibrium temperature for a Bond albedo of 0. For the planets with missing masses, we estimated g using the model of Chen & Kipping (2017).

The signal amplitudes are reported in Figure 7 together with the SNR relative to TRAPPIST-1 b’s, calculated by scaling the signal amplitude with the hosts’ brightness in J band. We find that K2-315b fares closely to the outer planets of TRAPPIST-1 in terms of potential for atmospheric exploration with JWST— its warmer and thus larger atmosphere compensating for its larger star. In fact, its relative SNR for transmission spectroscopy is half those of TRAPPIST-1 f–h, meaning that assessing the presence of a µ ∼ 20 atmosphere around the planet would require of the order of 40 transits—four times the ∼10 transits required for a similar assessment for TRAPPIST-1 f–h (Lustig-Yaeger et al. 2019). K2-315b is thus at the very edge of JWST’s capability for atmospheric characterization, mostly due to its “large” host star. The derivation above allows us to rank planets in terms of relative potential for atmospheric characterization, assuming a similar atmospheric scenario. In practice, a significant difference in atmospheric mean molecular mass, surface pressure, and/or cloud/haze altitude will strongly affect the actual potential of a planet for characterization (Lustig-Yaeger et al. 2019). For example, in some cases clouds could render the characterization of the favorable TRAPPIST-1 e difficult even with the generation of instruments following the JWST (i.e., LUVOIR, Pidhorodetska et al. 2020).

With an estimated radial velocity semi-amplitude of 1.3 m s−1 (assuming a mass comparable to that of Earth), the planet could be accessible for mass measurements using modern ultra-precise radial velocity instruments. Such possibilities and a ranking amongst the 10 best-suited Earth-sized planets for atmospheric study, EPIC 249631677 b will therefore play an important role in the upcoming era of comparative exoplanetology for terrestrial worlds. It will surely be a prime target for the generation of observatories to follow JWST and bring the field fully into this new era.

Acknowledgments: This project makes use of publicly available K2 data. P.N. would like to acknowledge funding for Kerr Fellowship and Elliot Fellowship at MIT. J.d.W. and MIT gratefully acknowledge financial support from the Heising-Simons Foundation, Dr. and Mrs. Colin Masson and Dr. Peter A. Gilman for Artemis, the first telescope of the SPECULOOS network situated in Tenerife, Spain. B.V.R. thanks the Heising-Simons Foundation for support. V.V.G. is a F.R.S.-FNRS Research Associate. M.G. and E.J. are F.R.S.-FNRS Senior Research Associates. This work was also partially supported by a grant from the Simons Foundation (PI Queloz, grant number 327127), and funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement Number 336480, from the ARC grant for Concerted Research Actions financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from F.R.S-FNRS (Research Project ID T010920F), from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement n◦ 803193/BEBOP), and from a Leverhulme Trust Research Project Grant n◦ RPG-2018-418.

Facilities: Keck:I (HIRES), Kepler, MAST (HLSP, K2), SNO, SSO

Software: astropy (Astropy Collaboration et al. 2013, 2018), batman (Kreidberg 2015), emcee (Foreman-Mackey et al. 2013), isochrones (Morton 2015), prose (Garcia et al. in prep.), SPOCK (Sebastian et al. in prep.), transitleastsquares (Hippke & Heller 2019), w¯otan (Hippke et al. 2019)

REFERENCES

Allard, F., Homeier, D., & Freytag, B. 2012, Philosophical Transactions of the Royal Society of London Series A, 370, 2765, doi: 10.1098/rsta.2011.0269

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71, doi: 10.1051/0004-6361/201322631

Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977, doi: 10.1126/science.1185402

Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125, doi: 10.1051/0004-6361/201322971

Burdanov, A., Delrez, L., Gillon, M., & Jehin, E. 2018, SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST, 130, doi: 10.1007/978-3-319-55333-7 130

Chen, J., & Kipping, D. 2017, ApJ, 834, 17, doi: 10.3847/1538-4357/834/1/17

Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102, doi: 10.3847/0004-637X/823/2/102

Christiansen, J. L., Crossfield, I. J. M., Barentsen, G., et al. 2018, AJ, 155, 57, doi: 10.3847/1538-3881/aa9be0

Chubak, C., Marcy, G., Fischer, D. A., et al. 2012, arXiv e-prints. https://arxiv.org/abs/1207.6212

Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog, II/246 Cutri et al., R. M. 2013, VizieR Online Data Catalog, II/328 de Wit, J., & Seager, S. 2013, Science, 342, 1473, doi: 10.1126/science.1245450

Delrez, L., Gillon, M., Queloz, D., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10700, Proc. SPIE, 107001I, doi: 10.1117/12.2312475

Dotter, A. 2016, ApJS, 222, 8, doi: 10.3847/0067-0049/222/1/8

Dressing, C. D., & Charbonneau, D. 2013, ApJ, 767, 95, doi: 10.1088/0004-637X/767/1/95

Esselstein, R., Aigrain, S., Vanderburg, A., et al. 2018, ApJ, 859, 167, doi: 10.3847/1538-4357/aac20e

Fernandes, C. S., Van Grootel, V., Salmon, S. J. A. J., et al. 2019, ApJ, 879, 94, doi: 10.3847/1538-4357/ab2333

Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601, doi: 10.1111/j.1365-2966.2009.14548.x

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306, doi: 10.1086/670067

Fressin, F., Torres, G., Charbonneau, D., et al. 2013, ApJ, 766, 81, doi: 10.1088/0004-637X/766/2/81

Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109, doi: 10.3847/1538-3881/aa80eb

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1, doi: 10.1051/0004-6361/201833051

Garcia, L. J., Gillon, M., & SPECULOOS. in prep. Gillon, M., Jehin, E., Fumel, A., Magain, P., & Queloz, D. 2013, in European Physical Journal Web of Conferences, Vol. 47, European Physical Journal Web of Conferences, 03001, doi: 10.1051/epjconf/20134703001

Gillon, M., Jehin, E., Lederer, S. M., et al. 2016, Nature, 533, 221, doi: 10.1038/nature17448

Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Nature, 542, 456, doi: 10.1038/nature21360

Gillon, M., Meadows, V., Agol, E., et al. 2020, arXiv e-prints, arXiv:2002.04798. https://arxiv.org/abs/2002.04798

Goldreich, P., & Soter, S. 1966, Icarus, 5, 375, doi: 10.1016/0019-1035(66)90051-0

G¨unther, M. N., Pozuelos, F. J., Dittmann, J. A., et al. 2019, Nature Astronomy, 3, 1099, doi: 10.1038/s41550-019-0845-5

G¨unther, M. N., Zhan, Z., Seager, S., et al. 2020, AJ, 159, 60, doi: 10.3847/1538-3881/ab5d3a

Hardegree-Ullman, K. K., Cushing, M. C., Muirhead, P. S., & Christiansen, J. L. 2019, AJ, 158, 75, doi: 10.3847/1538-3881/ab21d2

Hippke, M., David, T. J., Mulders, G. D., & Heller, R. 2019, AJ, 158, 143, doi: 10.3847/1538-3881/ab3984

Hippke, M., & Heller, R. 2019, A&A, 623, A39, doi: 10.1051/0004-6361/201834672

Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 721, 1467, doi: 10.1088/0004-637X/721/2/1467

Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 398, doi: 10.1086/676406

Huber, D., Bryson, S. T., Haas, M. R., et al. 2016, ApJS, 224, 2, doi: 10.3847/0067-0049/224/1/2

Ilin, E., Schmidt, S. J., Davenport, J. R. A., & Strassmeier, K. G. 2019, A&A, 622, A133, doi: 10.1051/0004-6361/201834400

Jao, W.-C., Henry, T. J., Gies, D. R., & Hambly, N. C. 2018, ApJL, 861, L11, doi: 10.3847/2041-8213/aacdf6

Jehin, E., Gillon, M., Queloz, D., et al. 2018, The Messenger, 174, 2, doi: 10.18727/0722-6691/5105

Kass, R. E., & Raftery, A. E. 1995, Journal of the American Statistical Association, 90, 773 Kipping, D. M. 2013, MNRAS, 435, 2152, doi: 10.1093/mnras/stt1435

Kolbl, R., Marcy, G. W., Isaacson, H., & Howard, A. W. 2015, AJ, 149, 18, doi: 10.1088/0004-6256/149/1/18

Kostov, V. B., Schlieder, J. E., Barclay, T., et al. 2019, AJ, 158, 32, doi: 10.3847/1538-3881/ab2459

Kreidberg, L. 2015, PASP, 127, 1161, doi: 10.1086/683602

Lasker, B. M., Sturch, C. R., McLean, B. J., et al. 1990, AJ, 99, 2019, doi: 10.1086/115483

Luger, R., Agol, E., Kruse, E., et al. 2016, AJ, 152, 100, doi: 10.3847/0004-6256/152/4/100

Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019, AJ, 158, 27, doi: 10.3847/1538-3881/ab21e0

Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63, doi: 10.3847/1538-4357/aaf3bc

Morris, S. L. 1985, ApJ, 295, 143, doi: 10.1086/163359

Morton, T. D. 2015, isochrones: Stellar model grid package. http://ascl.net/1503.010

Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 814, 130, doi: 10.1088/0004-637X/814/2/130

Murray, C. A., Delrez, L., Pedersen, P. P., et al. 2020, MNRAS, 495, 2446, doi: 10.1093/mnras/staa1283

Niraula, P., Redfield, S., de Wit, J., et al. 2018, arXiv e-prints, arXiv:1812.09227. https://arxiv.org/abs/1812.09227

Niraula, P., Redfield, S., Dai, F., et al. 2017, AJ, 154, 266, doi: 10.3847/1538-3881/aa957c

Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23, doi: 10.1051/aas:2000169

Patra, K. C., Winn, J. N., Holman, M. J., et al. 2017, AJ, 154, 4, doi: 10.3847/1538-3881/aa6d75

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3, doi: 10.1088/0067-0049/192/1/3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4, doi: 10.1088/0067-0049/208/1/4

Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15, doi: 10.1088/0067-0049/220/1/15

Pidhorodetska, D., Fauchez, T., Villanueva, G., Domagal-Goldman, S., & Kopparapu, R. K. 2020, arXiv e-prints, arXiv:2001.01338. https://arxiv.org/abs/2001.01338

Quinn, S. N., Becker, J. C., Rodriguez, J. E., et al. 2019, AJ, 158, 177, doi: 10.3847/1538-3881/ab3f2b

Rabus, M., Lachaume, R., Jord´an, A., et al. 2019, MNRAS, 484, 2674, doi: 10.1093/mnras/sty3430

Reid, I. N., Brewer, C., Brucato, R. J., et al. 1991, PASP, 103, 661, doi: 10.1086/132866

Reiners, A., Joshi, N., & Goldman, B. 2012, AJ, 143, 93, doi: 10.1088/0004-6256/143/4/93

Rodriguez, D. 2016, Dr-Rodriguez/Kinematics-App: Stellar Kinematics V1.0, v1.0, Zenodo, doi: 10.5281/zenodo.192159

Rodriguez, J. E., Vanderburg, A., Eastman, J. D., et al. 2018, AJ, 155, 72, doi: 10.3847/1538-3881/aaa292

Rogers, L. A. 2015, ApJ, 801, 41, doi: 10.1088/0004-637X/801/1/41

Seager, S., & Mall´en-Ornelas, G. 2003, ApJ, 585, 1038, doi: 10.1086/346105

Sebastian, D., Gillon, M., & SPECULOOS. in prep. Stassun, K. G., & Torres, G. 2018, ApJ, 862, 61, doi: 10.3847/1538-4357/aacafc

Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138, doi: 10.3847/1538-3881/ab3467

Van Grootel, V., Fernandes, C. S., Gillon, M., et al. 2018, ApJ, 853, 30, doi: 10.3847/1538-4357/aaa023

Vanderburg, A., & Johnson, J. A. 2014, PASP, 126, 948, doi: 10.1086/678764

Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Nature, 526, 546, doi: 10.1038/nature15527

Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, in Proc. SPIE, Vol. 2198, Instrumentation in Astronomy VIII, ed. D. L. Crawford & E. R. Craine, 362

Winn, J. N. 2010, Exoplanet Transits and Occultations, ed. S. Seager, 55–77

Yee, S. W., Petigura, E. A., & von Braun, K. 2017, ArXiv e-prints. https://arxiv.org/abs/1701.00922


[4] https://exoplanetarchive.ipac.caltech.edu


Written by escholar | We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community
Published by HackerNoon on 2024/02/13